The VR FleetCare Train Scanner combines a high measurement rate laser scanner with three line scan cameras, which capture tens of thousands of frames per second. Indeed, the next challenge for product development was processing the massive amount of data and sifting through it to find pertinent information – a veritable needle in the haystack.
The solution can be found in artificial intelligence and in neural networks. Each sensor is connected with a gigabit uplink to a Virebox computer developed by Vire Labs, which is designed precisely with an eye towards neural networks. The computers are enclosed in the same pole as the sensors.
The neural network is taught the correct shape and appearance of the train. The application compares the train passing by with this model and identifies potential deviations. The precision of the laser scanner and line scan cameras is even capable of detecting individual loose bolts on a train running by the Train Scanner at 100 km/h. Any foreign objects on the train roof can also be easily detected.
“LiDAR not only measures the contours of a surface, but also the intensity of the surface’s reflection. This allows us to distinguish between, for example, clean and dirty trains”, explains Vire Labs Business Development Director Ossi Porri.
When measurement readings are analysed locally, the Train Scanner is able to send out only meaningful findings, thus saving considerably on data transmission capacity. In other words, the Train Scanner does not use, for example, the PLC logic commonly found in industrial automation systems.
The Train Scanner is such a promising solution that VR FleetCare has begun selling it on the international rail market. Other types of customers can also benefit: The solution now used to measure commuter trains will, in the future, be able to measure, among other things, log loads on trucks. There are endless applications for smart sensors and advanced software!